М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
48385
48385
06.01.2022 11:40 •  Алгебра

Решите рациональное уравнение -1-(44/x-5)=7x

👇
Ответ:
ktoyatokoyinter
ktoyatokoyinter
06.01.2022
-1 - 44/(x-5)=7x
умножаем обе части на   x-5
-1 *(x-5) -44 = 7x (x-5)
7x^2 - 34x +39 = 0
D = (-34)^2 -4*7*39 = 64
√D = -/+8
x1 = 1/14 (34 -8) = 13/7
x2 = 1/14 (34 +8) = 3
ответ  x = {13/7 ; 3 }
4,4(27 оценок)
Открыть все ответы
Ответ:
огурок
огурок
06.01.2022
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.

Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе

1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)

Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.

Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
4,8(1 оценок)
Ответ:
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.

Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе

1) есть только одна команда, которая не играла (0)
2) есть только одна команда, которая сыграла ровно одну игру (1)
3) есть только одна команда, которая сыграла ровно две игры (2)
.
.
.
20) есть только одна команда, которая сыграла ровно 19 игр (19)

Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.

Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ