Объяснение:
1)Найди решение неравенства. Начерти его на оси координат.
x>4.
На числовой оси отметить ноль по центру, от нуля вправо отложить четыре клеточки, это будет точка х=4. Теперь от этой точки штриховать вправо, как бы до + бесконечности. Неравенство строгое, поэтому точка 4 должна обозначаться маленьким кружком, пустым внутри.
ответ: x∈(4;+∞]
2)Отобрази решение неравенства 1≤z на оси координат. Запиши ответ в виде интервала.
На числовой оси отметить ноль по центру, от нуля вправо отложить одну клеточку, это будет точка z=1, от этой точки влево штриховать, как бы до - бесконечности.
Интервал: z ∈(-∞, 1)
⦁ Длины сторон треугольника обозначены как a, b и c. Какие из неравенств неверны?
Неясное задание.
3) Известно, что b>c.
Выбери верные неравенства:
7,9−b>7,9−c
−7,9b<−7,9c
7,9b>7,9c
b+7,9>c+7,9
b−7,9>c−7,9
Выделены верные неравенства.
См. Объяснение
Объяснение:
Задание
Докажите признак параллелограмма по двум противоположным сторонам, которые равны и параллельны.
Доказательство
Дано: четырёхугольник АВСD; сторона ВС равна и параллельна стороне АD.
Доказать, что АВСD - параллелограмм.
Для доказательства проведем диагональ AC, в результате чего четырёхугольник АВСD разобьется на два треугольника - Δ ABC и ΔACD.
Сторона ВС треугольника АВС равна стороне АD треугольника AСD - согласно условию.
Сторона АС треугольника АВС равна стороне АС треугольника ACD - согласно построению: проведённая диагональ является общей стороной данных треугольников.
∠ВСА треугольника АВС равен ∠САD треугольника ACD - как углы внутренние накрест лежащие при параллельных прямых ВС║AD и секущей АС.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (первый признак равенства треугольников).
Из равенства треугольников ABC и АCD следует, что сторона АВ = CD.
АВ также параллельна СD, так как ∠ВАС треугольника АВС равен ∠АСD треугольника ACD; а так как эти углы являются внутренними накрест лежащими при прямых АВ и СD и секущей АС, то это означает, что АВ ║СD.
Таким образом, в четырёхугольнике АВСD обе пары противоположных сторон равны и параллельны друг другу, следовательно, четырёхугольник АВСD является параллелограммом.
Таким образом, мы доказали, что: если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник – параллелограмм (второй признак параллелограмма).