Мишень представляет собой три круга (один внутри другого), радиусы которых равны 3, 7 и 8см.стрелок встрелил, не целясь, и попал в мишень. найдите вероятность того, что он попал в средний круг, но не попал в маленький круг.
Вероятность того, что он попал в средний круг, но не попал в маленький круг, равна отношению: , где: Sb - площадь большого круга Ss - площадь среднего круга Sm - площадь маленького круга Вычисляем: Вероятность: ответ: 5/8
Сначала выразим tg(3a) через tg(a) Получили Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то 3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0 Далее, например, при tg(a) = 1 получаем tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1 А при tg(a) = -1 получаем tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1 Но уже при tg(a) = 2 мы получаем tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11 Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11. Это уже нецелые значения, и ни при каких других а целых не будет. ответ: (0; 0); (1; -1); (-1; 1)
Дана функция y=f(x), где f(x)= -x+3,4, если x<-2 f(x)= -2x+5, если -2≤ x≤ 3.5 f(x)= x²,если x>3.5 вычислите значения функций при заданных значениях аргумента . Расположите полученные числа в порядке убывания f(-3)= 3+3,4=6,4 f(x)= -x+3,4, если x<-2 f(-2) =4+5=9 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3) =-6+5=-1 f(x)= -2x+5, если -2≤ x≤ 3.5 f(4)=16 f(x)= x²,если x>3.5 f(0)= 0+5=5 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3.5)=-7+5=-2 f(x)= -2x+5, если -2≤ x≤ 3.5
где:
Sb - площадь большого круга
Ss - площадь среднего круга
Sm - площадь маленького круга
Вычисляем:
Вероятность:
ответ: 5/8