0<у<24, 12<х<24, где х=АВ=ВС, у=АС
Объяснение:
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
S(1)=1, S(2)=1+3=4, S(3)=1+3+5=9, S(4)=1+3+5+7=16, S(5)=….=25,
Замечаем, что сумма первых n нечётных чисел натурального ряда равна n2 т.е. S(n)=n2. Докажем это м.м.и.
1) для n =1 формула верна.
2) предположим, что она верна для какого-нибудь натурального n=k , т.е. S(k)= k2.
Докажем , что тогда она будет верна и для n=k+1, т.е. S(k+1)=(k+1)2
S(k+1)=1+3+5+…+(2k-1)+(2k+1)=S(k)+(2k+1)=k2+2k+1=(k+1)2.
Следовательно, формула верна для всех натуральных значений n , т.е. S(n)=n2
Если a= 1,1/3;b= 2,2/3⇒(4/3-8/3)(4/3+8/3):2×16/9×8/3-2×4/3×81/64=-4/3×12/3:256/27-648/192=-48/9:256/27-648/192...дальше я не знаю