Задача сводится к взятию производной от функции для поиска максимума и минимума, а также проверке значений на концах отрезка.
y' = x² - 1
критические точки
x² - 1 = 0 ⇔ x = -1, x = 1 ⇒ x=-1 не входит в нашу область по условию 0 ≤ x ≤ 4
___-1___+___0-1+4+_
y' > 0 на интервале x∈(-∞, -1)U(1, +∞)
y' < 0 при x∈(-1, 1)
производная меняет свой знак с + на - при x = -1 - это точка максимума (но по условию мы ее не рассматриваем)
c - на + при x = 1 - это точка минимума.
Найдем значение функции в этих точках:
y(1) = -2/3
Также проверим на концах отрезка [0, 4]
y(0) = 0
y(4) = 52/3
Максимум достигается при x = 4 - y = 52/3
Минимум при x = 1 - y = -2/3
1) Область определения функции (ОДЗ): вся числовая ось (любые х)
2) Область значений функции: y≥0
3) Функция не является ни четной, ни нечетной, т.к. f(x) ≠ f(-x) и f(x)≠ -f(x)
4) Функция непрерывная, т.к. ОДЗ - вся числовая ось.
5) Нули функции: x^2*(x - 2)^2 = 0, x=0, x=2, т.е. (0:0) и (2;0). Функция пересекает ось Оу в точке: (0;0).
6) f '(x) = 4x^3 - 12x^2 + 8x = 0
x^3 - 3x^2 + 2x = 0, x*(x^2 - 3x + 2) = 0
x1 = 0, x2 = 2, x3 = 1
Производная отрицательна при: х∈(-бесконечность; 0)u(1;2), функция убывает
Производная положительна при: х∈(0;1)u(2;+бесконечность), функция возрастает.
x=0 и x=2 - точки минимума
x=1 - точка изгиба (выпуклость функции)
7) График строится исходя из полученных сведений пп.1)-6), и с добавлением произвольных точек (значение высчитать вручную, устно). График прикреплен.