М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Fukci
Fukci
22.03.2021 15:57 •  Алгебра

Постройте график функции заданной формулой y=-1\3+2.принадлежит ли точка м(-6; 4) графику этой функции? .всем заранее

👇
Ответ:
karinatan12354
karinatan12354
22.03.2021
Получается вот такой график. Естественно,фломастером не больно-то построишь, но суть в том, что нужно построить воображаемую ось Х1, которая будет на 2 единичных отрезка выше, чем обычная, а дальше строить график той же функции, но без двойки.

Постройте график функции заданной формулой y=-1\3+2.принадлежит ли точка м(-6; 4) графику этой функц
4,7(57 оценок)
Открыть все ответы
Ответ:
iyvvann
iyvvann
22.03.2021

1) для того чтобы функция была непрерывной, нужно чтобы пределы слева и справа в точках 0 и 1 были равны. Найдем их:

\lim_{x \to 0-0} \frac{1}{x}=-\infty \\ \lim_{x \to 0+0} x+1=1;\\

Так как 1≠-∞, то точка 0- это точка разрыва(второго рода).

Чтобы функция была неразрывной в точке 1, нужно чтобы предел от 3-ax^2 был равен 2, так как \lim_{x \to 1-0} x+1=2

При x=1 ⇒y=2.

Подставим координаты (1;2)  в формулу y=3-ax^2⇒2=3-а⇒а=1, то есть уравнение имеет вид y=3-x^2. Проверим это: \lim_{x \to 1-0} 3-x^2=2

Действительно 2=2, значит функция не будет являться непрерывной в точке 1.

ответ: х=0 - точка разрыва. функция непрерывна в точке х=1 при а=1

2)  Аналогично:

\lim_{x\to -1-0} 2-x=3

\lim_{x \to -1+0} \frac{1}{x}=-1

3≠-1, значит -1- это точка разрыва.

\lim_{x \to 1-0} \frac{1}{x} =1

В точке x=1 ⇒y=1. Подставим: 1=a*1⇒a=1.

Проверим: \lim_{x \to 1+0}x^2=1.

Так как точка  х=0 лежит в области определения функции y=\frac{1}{x}, а из ОДЗ следует что х≠0, то функция также будет прерываться в точке х=0

ответ: х=-1 - точка разрыва,  х=0- точка разрыва, функция будет непрерывна в точке х=1 при а=1


Исследовать функцию на непрерывность. найти, при каком значении параметра '' a '' функция будет непр
4,6(4 оценок)
Ответ:
Asian28
Asian28
22.03.2021

опытаемся найти точки их пересечения, решив систему:

(x-2) 2 + (y-3) 2=16

(x-2) 2 + (y-2) 2=4

(x-2) 2=16 - (y-3) 2

(x-2) 2=4 - (y-2) 2,

отсюда 16 - (y-3) 2=4 - (y-2) 2

16-у2+6 у-9=4-у2+4 у-4 ещё

6 у-4 у=4-4+9-16 ещё

2 у=-7 найдём игрек

у=-3,5 и попробуем найти икс

(x-2) 2=4 - (-3,5-2) 2

(x-2) 2=4-30,25

(x-2) 2=-25,75, а квадрат не может быть отрицательным, следовательно, эти две окружности не пересекаются. центры окружностей - в точках (2; 3) и (2; 2) соответственно, то есть расстояние между центрами равно единице, а радиусы - 4 и 2, то есть вторая, меньшая, окружность расположена внутри первой.

ответ: малая окружность расположена внутри большой.

4,5(41 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ