Решение Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB = R (радиусу вписанной окружности) и OE = R/2 (по условию). Тогда по теореме Пифагора имеем: BE² = OB² – OE² = R² – (1/4)*R² = (3/4)R² BE = √((3/4)R²) = R√3 / 2 Так как АО = ОВ и катет ОЕ – общий, то ΔАЕО = ΔВЕО. Отсюда следует: ЕА = R√3 / 2 Тогда АВ = ВЕ + ВЕ = R√3 / 2 + R√3 / 2 = R√3 Что и требовалось доказать
Представим эти стороны, как 3x и 4x. Согласно формуле площади прямоугольника, их нужно перемножить. Т.к. площадь нам уже известна, то нам остаётся найти только x (ну и потом стороны): 48=3x умножить 4 48=12x^2 Делим всё это на 12: 48см^2=12x^2 |:12 4=x^2 Убираем квадрат и получаем x=+-2 (x^2 всегда будет положительным, т.к. это чётная степень. Поэтому x=2 и x=-2) Но стороны не могут быть равны отрицательному значению, поэтому остаётся только 2. Теперь находим стороны:
3x=6см 4x=8см ответ: стороны прямоугольника равны 6см и 8см.
3tg²x-4tgx+1=0
tgx=a
3a²-4a+1=0
tgx=1 tgx=1/3
x=π/4+πn x=arctg1/3+πn
кол-во 2