При х=1, х=9
Объяснение:
каждый член арифметической прогрессии, начиная со второго, есть среднее арифметическое предыдущего и последующего членов.
√(5х+4)=(√х+√(12х+13)) :2
2√(5х+4)=(√х+√(12х+13) ) возведем в квадрат обе части
4(5х+4)=х+2√х√(12х+13)+12х+13,
(20х+16)-х-12х-13=2√х√(12х+13)
7х+3=2√(12х²+13х) возведем в квадрат обе части
49х²+42х+9=48х²+52х
х²-10х+9=0
х=1 , х=9:1=9
Проверка √(5х+4)=(√х+√(12х+13)) :2
1) Х=1 корень ,т.к.
√(5*1+4)=√9=3
(√1+√(12*1+13)) :2=(1+5) :2=3 , а 3=3.
2) Х=9 корень ,т.к.
√(5*9+4)=√49=7
(√9+√(12*9+13)) :2=(3+11) :2=7 , а 7=7.
Объяснение: пусть скорость катера=х, и если он по течению, то его скорость увеличилась на 3км/ч, поэтому по течению он проплыл 48км со скоростью х+3. Когда он плыл против течения, то скорость течения ему не а наоборот и он проплыл 18км со скоростью х-3. По течению он потратил 48/х+3 времени, а против 18/х-3. Зная, что он потратил на всю дорогу 3 часа, составим уравнение:
(48/х+3)+(18/х-3)=3 |на этом этапе подбираем общий знаменатель:
(48х-144+18х+54)/(х+3)(х-3)=3
(66х-90)/(х²-9)=3 | перемножим числитель и знаменатель соседних дробей крест накрест:
(х²-9)3=66х-90
3х²-27-66х+90=0
3х²-66х+63=0 |÷3
х²-22х+21=0
Д=484-4×21=484-84=400
х1=(22-20)/2=2/2=1
х2=(22+20)/2=42/2=21
Итак: есть 2 варианта значения х, но первый вариант нам не подходит поскольку скорость катера на самом деле больше, чем 1км/ч, поэтому используем х2=21.
Скорость катера=21км/ч
Надеюсь этот ответ вам подойдёт. ^-^