а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
y=x-(6/x)+14 = (x² - 6 +14x)/x = ( x² +14x -6)/x
наш план действий:
1) ищем производную.
2) приравниваем её к нулю и решаем . какие корни попадают в указанный промежуток.
3)решаем получившееся уравнение
4) находим значения данной функции в найденных корнях и на концах промежутка
5) пишем ответ
Начали?
1) y' = (2x +14 -x² -14x +6)/x² = (-x²-12x +20)/x²
2) (-x²-12x +20)/x² = 0, ⇒ (-x²-12x +20) = 0,⇒ x² +12x -20 = 0
x ²≠ 0
x² +12x -20 = 0
х = -6 +-√56 ≈ - 6 +- 7,4...
х₁≈ -6 +7,4... = 0,4...
х₂≈ - 6 -7,4... = -13,4...
3) ни один корень в указанный промежуток не попал.
4) х = 0,5
у = ( x² +14x -6)/x = (0,25 +7 -6)/0,5 = 1,25/0,5 = 2,5
х = 19
у = ( x² +14x -6)/x = (361 + 266 -6)/19= 33
5) ответ: min y = y(0,5) = 2,5