ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn
Дана систему:
{x^2+2y^2=17
{x^2-2xy=-3.
Используем метод подстановки. Из второго уравнения определяем:
у = (x^2 + 3)/2х и подставим в первое.
x^2 + 2((x^4 + 6x^2 + 9)/4x^2) = 17. Приводим к общему знаменателю.
4x^4 + 2x^4 + 12x^2 + 18 = 68x^2. Получаем биквадратное уравнение.
6x^4 - 56x^2 + 18 = 0, сократим на 2: 3x^4 - 28x^2 + 9 = 0.
Замена x^2 = t. 3t^2 - 28t + 18 = 0.
Ищем дискриминант:
D=(-28)^2-4*3*9=784-4*3*9=784-12*9=784-108=676;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(2root676-(-28))/(2*3)=(26-(-28))/(2*3)=(26+28)/(2*3)=54/(2*3)=54/6=9;
t_2=(-2root676-(-28))/(2*3)=(-26-(-28))/(2*3)=(-26+28)/(2*3)=2/(2*3)=2/6=1/3.
Получаем 4 ответа: х = +-3 и х = +-(1/√3)
х = 3, у = (9 + 3)/(2*3) = 12/6 = 2,
х = -3, у = (9 + 3)/(2*(-3)) = 12/(-6) = -2,
х = (1/√3), у = ((1/3) + 3)/(2*(1/√3)) = 5/√3,
х = (-1/√3), у = ((1/3) + 3)/(2*(-1/√3)) = -5/√3.
Снинец - 72% =0,72
Олово- ?
1) 800*0,72=576(г)- свинца
2) 800-576=224( г )- Олово
ответ 224 г