1. Найдите сумму бесконечно убывающей геометрической прогрессии 36: 12; 4; ...;
b1=36
b2=12
b3=4
q=b2/b1
s=b1/(1-q)
q=-12/36=-1/3
s=36/(1+1/3)=36/(4/3)=36*3/4=27
ответ: 27
2. Сумма бесконечно убывающей геометрической прогрессии равна 54. Найти, если
Если...? Тут как будто какого-то условия не хватает ((
3. Найдите сумму и первых членов арифметической прогрессии, если а=1, an=200, n=100
Sn = (a1 + an)/2* n
a1 = 1
an = 200
n = 100
S100 = (1 + 200)/2*100 = 201*50 = 10050
ответ: 10050
Объяснение:
Проверь второе задание, там будто реально условия не хватает.
5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π