24 см.
Объяснение:
Пусть один катет прямоугольного треугольника будет а см , а другой bсм.
Тогда площадь равна 0,5*а* b, а квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:


Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.

Решим квадратное уравнение:

Если b=6, то а=8
Если b=8, то а=6
Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)
P= 6+8+10 = 24 (см)
квадратных единиц
Объяснение:
Построим график 
Пусть S площадь ограниченная графиком функции
осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.






Координаты точек A и B:
A(0;-4)
B(2;0)
Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).
Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде:
.





Пусть
- площадь между прямой
и функцией 
Пусть
и
.



По формуле площади прямоугольного треугольника:
.
Промежуток интегрирования: ![[0;2]](/tpl/images/4566/3708/2ae13.png)
Докажем, что
при ![x \in [0;2]](/tpl/images/4566/3708/4a92d.png)



тогда можно сделать вывод, что
при
.
По теореме:

.
квадратных единиц.


ответ при