Находишь производную y'=3x2-2x-8: Потом решаешь уравнение 3x2-2x-8=0; Находишь через дискриминант х1=2; х2=-1 1/3 -1 1/3 в промежуток не входит и дальше поставляешь значения 1, 7 и 2 в начальное уравнение, отсюда и ищешь наименьшие значение функции
У=х²+6х+13 графиком уравнения является парабола ,так как коэффициент при х² больше 0 , в нашем случае он равен 1, значит ветви параболы направленны вверх ., при решении уравнения х²+6х +13=0, D=36-52= - 16<0 дискриминант меньше 0, значит уравнение не имеет действительных корней, т.o парабола не пересекает ось ОХ (график расположен выше оси ОХ ), следовательно при всех значениях переменной х , значение функции будет принимать только положительные значения
наименьшее значение находится на вершине параболы ее координаты х=-b/2a =-6/(2*1)= -3 y=(-3)²+6*(-3)+13=4 - наименьшее значение функции
Потом решаешь уравнение 3x2-2x-8=0;
Находишь через дискриминант х1=2; х2=-1 1/3
-1 1/3 в промежуток не входит и дальше поставляешь значения 1, 7 и 2 в начальное уравнение, отсюда и ищешь наименьшие значение функции