Вот решение 1 задачи: 9486 = 0Б2К - две цифры стоят не на своих местах. 1279 = 1Б2К - одна цифра на своем месте и две не на своих. Цифр 0 и 5 нет вообще, так как мы за 2 хода угадали 5 цифр из 4. Повторилась 9, значит, она и попала на свое место - последнее. 8512 = 0Б2К - две цифры стоят не на своих местах. 9761 = 1Б1К - одна цифра на своем месте и одна не на своем. Мы уже знаем, что не на своем месте 9, значит, на своем 1, 6 или 7.
Рассмотрим ходы 1279 и 9761. 1) В ходе 9761 цифра 1 не может стоять на своем месте, потому что мы уже знаем, что последняя цифра - 9.
2) Если в 9761 на своем месте стоит 6, то 1 и 7 нет, тогда число 1279 имело бы две цифры, а не три. Получили противоречие.
3) Значит, в 9761 на своем месте стоит 7, это единственный вариант. Тогда цифр 1 и 6 нет, а 2 есть, и стоит она не на 2 месте. Тогда 2 может стоять на 1 или на 3 месте. Теперь рассмотрим ход 8512. Цифр 1 и 5 нет, значит, 8 и 2 есть. Значит, в ходе 9486 цифра 8 стоит не на своем месте. Мы знаем, что на 2 месте стоит 7, а на 4 месте 9, значит 8 на 1 месте. ответ: 8729
Примерно такими же рассуждениями можно решить 2 и 3 задачи. Я дам только ответы. 2. 1706 3. 2637 Впрочем, в 3 задаче я не уверен, кажется, там ход пропущен. В числе 2106 цифра 6 есть, а 0 нет, а вот вторая цифра - 1 или 2. Остается непонятно. Я дал ответ 2637, исходя из того, что 2 - бык, то есть стоит на своем месте. Но может оказаться, что бык - 6. Тогда ответ вообще не определен.
a^10 - a^5*b^8 + 25*b^16 = (a^5)^2 - 2*a^5*5b^8 + 9a^5*b^8 + (5b^8)^2 =
= (a^5 - 5b^8)^2 + 9a^5*b^8 = (a^5 - 5b^8)^2 + (3a^(2,5)*b^4)^2
2) (4x-3)(4x+3) - (4x-1)^2 = 3x
16x^2 - 9 - 16x^2 + 8x - 1 = 3x
8x - 3x = 9 + 1
5x = 10
x = 2
3) (3x-1)^2 - 7 < (9x+2)*x + 2
9x^2 - 6x + 1 - 7 < 9x^2 + 2x + 2
-6x - 2x < 2 + 7 - 1
-8x < 8
x > -1
Наименьшее цело число, удовлетворяющее неравенству:
x = 0
Так как неравенство строгое, то -1 не подходит.