Система уравнений:
x + 5y = 7;
3x + 2y = -5.
Выражаем из первого уравнения системы переменную x через у и получаем следующую систему уравнений:
x = 7 - 5y;
3x + 2y = -5.
Теперь подставим во второе уравнение системы вместо x выражение из первого уравнения системы:
x = 7 - 5y;
3(7 - 5y) + 2y = -5.
Переходим к решению второго уравнения системы:
3 * 7 - 3 * 5y + 2y = -5;
21 - 15y + 2y = -5;
-15y + 2y = -5 - 21;
-13y = -26;
y = -26 : (-13);
y = 2.
Система уравнений:
x = 7 - 5y = 7 - 5 * 2 = 7 - 10 = -3;
y = 2.
ответ: (-3; 2).
Объяснение:
1. Нули:
х=0, тогда у=2
4-|х+2|=0
|х+2|=4
Это равносильно двум уравнениям:
х+2=4
х+2=-4
или
x=2
x=-6
2. Промежутки знакопостоянства:
4-|х+2|>0
или
|х+2|<4
или
-4<х+2<4
-6<х<2
Функция положительна на интервале (-6;2) и соответственно отрицательна при остальных значениях х.
3. Функция равносильна двум.
у=4-х-2=2-х (при х+2>0 или х>-2)
у=4+х+2=6+х (при х+2<0 или х<-2)
Их производные соответственно равны -1 и 1
Следовательно первая убывает (на промежутке от -2 до + бесконечности), а вторая возрастает (от - бесконечности до -2)
х=2
2)х³=-8
х=-2
4)х⁸=1
х=1
5)х¹⁰=0
х=0