Имеются два куска сплава меди и цинка с процентным содержанием меди 30% и 55% соответственно. эти сплавы переплавили и получили сплав весом 100гр. и содерж. медь - 40% . сколько весил каждый из сплавленых кусков?
Система уравнений: 0,3х+0,55у=0,4(х+у); х+у=100. х - масса 1 сплава, у - второго. х=100-у 0,3(100-у)+0,55у=0,4(100-у)+0,4у решаешь, получается у=40 х=60
Решение: Обозначим время до встречи автобусов за t, -cкорость V1 первого автобуса равна: V1=132/(t+50/60) -cкорость второго автобуса равна: V2=132/(t+1 12/60) Скорость сближения автобусов равна: 132/(t+50/60)+132/(t+1 12/60)=132/t 132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2) t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132 132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132 132t²+158,4t+132t²+110t=132t²+110t+158,4t+132 132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0 132t²-132=0 132t²=132 t²=132/132 t²=1 t=√1 t=1 Отсюда: -скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)= =132/(11/6)=72(км/час) -скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час
Может так: Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сплаве. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. В сплаве, где они вместе стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг — вес третьего сплава. (100*4)/(Х+25)+(100*8)/Х=40 Х^2-5*Х-500=0 Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг.
0,3х+0,55у=0,4(х+у);
х+у=100.
х - масса 1 сплава, у - второго.
х=100-у
0,3(100-у)+0,55у=0,4(100-у)+0,4у
решаешь, получается
у=40
х=60