В решении.
Объяснение:
Решить систему уравнений:
3х+2у=2
3х-2у=1 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одного значения и с противоположными знаками.
Складываем уравнения:
3х+3х+2у-2у=2+1
6х=3
х= 0,5
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3х+2у=2
3*0,5+2у=2
2у=2-1,5
2у=0,5
у=0,25
Решение системы уравнений (0,5; 0,25).
Система уравнений имеет единственное решение, значит, графики данных уравнений пересекаются (координаты точки пересечения и являются решением системы уравнений).
㏒₀,₂(2/(х-2))≤㏒₀,₂(5-х); ОДЗ неравенства х строго больше 2, но меньше пяти. т.к. основание больше 0, но меньше 1, то меняем знак неравенства по отношению к агрументу. Получим (2/(х-2))≥(5-х); (2-(5-х)(х-2))/(х-2)≥0
(2-(5х-10-х²+2х)/(х-2)≥0; (2-5х+10+х²-2х)/(х-2)≥0; (х²-7х+12)/(х-2)≥0 ; х²-7х+12=0, по Виета х=3, х=4. неравенство при данном ОДЗ равносильно такому (х-4)(х-3)(х-2)≥0; х≠2
это неравенство решим методом интервалов.
___234
- + - +
Решением с учетом ОДЗ будет (2;3]∪[4;5)
2) 15 с=15/3600
3) 90 * (15/3600)=15/40 км = (15/40)*1000=375 м