Объяснение:
=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Объяснение:
разложим на множители числитель и знаменатель
x²-5x+6=x²-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)
x²-7x=x(x-7)
(x²-5x+6)/(x²-7x)<0
(x-2)(x-3)/(x(x-7))<0
корни числителя и знаменателя 0; 2;3;7 нанесем их на числовую ось и определим знак выражения (x-2)(x-3)/(x(x-7)) на каждом интервале
для этого будем брать любое число из каждого интервала и подставлять в выражение (x-2)(x-3)/(x(x-7))
x=10 (x-2)(x-3)/(x(x-7))= (10-2)(10-3)/(10(10-7))=(+)(+)/(+)(+)=(+) знак+
x=5 (x-2)(x-3)/(x(x-7))= (5-2)(5-3)/(5(5-7))=(+)(+)/(+)(-)=(-) знак-
x=2,5 (x-2)(x-3)/(x(x-7))= (2.5-2)(2.5-3)/(2.5(2.5-7))=(+)(-)/(+)(-)=(+) знак+
x=1 (x-2)(x-3)/(x(x-7))= (1-2)(1-3)/(1(1-7))=(-)(-)/(+)(-)=(-) знак-
x=-1 (x-2)(x-3)/(x(x-7))= (-1-2)(-1-3)/(-1(-1-7))=(-)(-)/(-)(-)=(+) знак+
0237>
+ - + - +
так как знак неравенства меньше выбираем интервалы со знаком -
х∈(0;2)∪(3;-7)
решаем по формуле и далее приходим к одному основанию
Левая часть..
(sina/cosa)+(Cosa/sina) = (sin^2(a)+cos^2(a)) /(cosa*sina) = 1/(cos(a)*sin(a)
Правая часть
по формуле
2 / ( 2sin(a)*cos(a) ) = 1/(cos(a)*sin(a))
Левая часть = Правой части
Тождество верно