Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
1) Если это прямоугольник (длина и ширина), то S0=a*b; S=1,2a*1,1b=1,32ab=1,32*S0 Площадь увеличится на 32%. Если же это треугольник, то речь идёт о основании и высоте. S0=a*h/2; S=1,2a*1,1h/2=1,32*S0 Увеличение все равно на 32% 2) a+b=56; a/3=b/4 4a=3(56-a); 7a=3*56=7*24 a=24; b=56-a=56-24=32 3) (4^6*9^5+6^9*120)/(8^4*3^12-6^11)= (2^12*3^10+2^9*3^9*2^3*3*5)/ (2^12*3^12-2^11*3^11)= (2^10*3^10*(4+4*5))/(2^11*3^11*(6-1)= 24/(6*5)=4/5=0,8 4) Было х яиц, взяли х/2, осталось тоже х/2. Второй раз взяли х/4, осталось х/4. Третий раз взяли х/8, осталось х/8, и это было 10 яиц. x/8=10; x=80 яиц было в корзине. Если же брали 4 раза половину остатка, то было 160.