22. -2
23. 1
Объяснение:
22. Рассмотрим каждое из подкоренных выражений:
Поскольку квадрат какого-либо числа неотрицателен, , отсюда:
Значит, левая часть
Правая часть
Левая часть не меньше 4, а правая не больше 4. Значит, равенство достигается тогда и только тогда, когда обе части равны 4. Правая часть равна 4:
Проверим этот корень для левой части:
— верно.
Уравнение имеет единственный корень x = -2.
23. Заметим, что
Значит, (знаменатель не обращается в ноль, так как x ≥ 0 по ОДЗ, значит,
).
Пусть . Тогда уравнение имеет вид:
Заметим, что t = 4 — корень многочлена левой части. Поделив его столбиком на (t - 4), получим его разложение на множители:
Поскольку t > 0, , значит, обе части можно поделить на второй множитель, так как он не равен нулю. Получаем:
Левая часть неотрицательна, значит, правая часть также неотрицательна:
Корень удовлетворяет условиям 0 ≤ x ≤ 4, значит, он подходит.
logx^2_(x^2-2x+1)≤logx^2_x^2;
Дальше такая замена logc_a≤logc_b;⇔ (c-1)*(a-b)≤0.
используя эту теорему, можно записать:
(x^2-1)*(x^2-2x+1-x^2)≤0;
(x+1)(x-1)(-2x+1)≤0; умножим на минус 1, поменяем знак и получим
(x+1)(x-1)(2x-1)≥0.
Метод интервалов даст решение: x∈[-1;1/2]∨[1; + бесконечность).
Теперь надо обязательно найти ОДЗ и пересечь с ним решение:
ОДЗ: x^2>0; ⇒x≠0;
x^2≠1; ⇒x≠ + - 1;
(x-1)^2>0; ⇒x≠1.
То есть по Одз исключаются точки -1, 0 и 1. ТОгда решением неравенства будет множество х, ∈ (-1;0) U (0;1/2] U (1;+бесконечность).
А ответ не сходится потому, что это ответ для системы неравенств, если это С3