Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*ln(x) Функция определена при всех х>0 Найдем производную функции y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) = = x(2ln(x)+1) Найдем критические точки y' =0 или x(2ln(x)+1) =0 2ln(x)+1 = 0 или ln(х) =-1/2 x = e^(-1/2) =1/e^(1/2) =0,606 На числовой оси отобразим знаки производной ..-.. 0+... !! 00,606 Поэтому функция возрастает если х принадлежит (0,606;+бесконечн) Функция убывает если х принадлежит (0;0,606) В точке х=0,606 функция имеет локальный минимум y( e^(-1/2) ) = (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18 Локального максимума функция не имеет
Каждый квадратный трехчлен ax 2 + bx+ c может быть разложен на множители первой степени следующим образом.
Решим квадратное уравнение: ax 2 + bx+ c = 0 . Если x1 и x2 - корни этого уравнения, то ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) . Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени. Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 )
x^2-x-12=0
D= 1-4*(-12)= 1+48= 49
x1= (1-7)/2= -6/2= -3
x2= (1+7)/2 = 8/2 = 4
х>-3 x>4
б) -49x^2+14x-1 >=0
-49x^2+14x-1=0
D= 196-4*(-49)*(-1)= 196-196=0
x= -14/-98= 1/7
х>= 1/7
в) -3x^2+x-2<0
-3x^2+x-2=0
D=1-4*(-3)*(-2)= 1-24=-23
корней нет