Решение: Выберем две точки, проведем одну сторону, всего треугольников можно построить 6 (две точки использовано, третья может одной из 6 оставшихся),
всего можно провести различных отрезков 8*7\2=28 отрезков соединв две точки (8 точек, каждую из них можно соединить с одной из 7 точек, при этом каждый отрезок считается два раза, так у него два конца - вершины)
Тогда всех треугольников 28*6\3=56 треугольников (не хватает третьей вершины, ее можно выбрать из одной из оставшихся 6 вершин, делим на 3 потому что каждый треугльник посчитали по три раза по количевству его вершин)
Представьте число 120 в виде произведения двух чисел, одно из которых на два меньше другого. Пусть х - меньшее число, тогда х+2 - большее число. х*(х+2)=120 х²+2х=120 х²+2х-120=0 D=b²-4ac=2²-4*1*(-120)=4+480=484 (√484=22) х₁= = 10 х₂= = -12
или по теореме Виета: х₁+х₂=-2 х₁*х₂=-120 х₁=10 х₂= -12
Если наименьшее число х=10, то наибольшее число будет равно х+2=10+2=12 10*12=120 Если наименьшее число будет равно х=-12, то наибольшее число будет равно х+2=-12+2=-10 (-12)*(-10)=120
Решение: Выберем две точки, проведем одну сторону, всего треугольников можно построить 6 (две точки использовано, третья может одной из 6 оставшихся),
всего можно провести различных отрезков 8*7\2=28 отрезков соединв две точки (8 точек, каждую из них можно соединить с одной из 7 точек, при этом каждый отрезок считается два раза, так у него два конца - вершины)
Тогда всех треугольников 28*6\3=56 треугольников (не хватает третьей вершины, ее можно выбрать из одной из оставшихся 6 вершин, делим на 3 потому что каждый треугльник посчитали по три раза по количевству его вершин)
Итого овтет 56 треугольников