М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AnutaNikishina
AnutaNikishina
24.07.2020 15:30 •  Алгебра

Двумя кранами бассейн наполняется за 1ч20мин а одним краном за 2нуба за какое время наполнится бассейн другим краном

👇
Ответ:
Рад1111111
Рад1111111
24.07.2020
Х-в час 1кран,у-в час 2кран
1/(х+у)=4/3⇒х+у=3/4
1/х=2⇒х=1/2в час 1кран
1/2+у=3/4
у=3/4-1/2=3/4-2/4=1/4в час 2кран
1:1/4=4ч наполнит бассейн 2кран
4,8(55 оценок)
Открыть все ответы
Ответ:
sergantmomo
sergantmomo
24.07.2020
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
4,5(70 оценок)
Ответ:
aazzziizz
aazzziizz
24.07.2020
5 arccos 1\2 + 3 arcsin (-корень из 2\2)
Оба значения табличные для   cos   и   sin
5 arccos \frac{1}{2} + 3 arcsin (- \frac{ \sqrt{2} }{2}) = \\ 5 * \frac{ \pi }{3} +3*(- \frac{ \pi }{4} ) = \\ \frac{5 \pi }{3} - \frac{3 \pi }{4} = \frac{11 \pi }{12}


sin ( 4 arccos ( - 1\2) - 2 arcctg корень из 3\3)
Оба значения табличные для   cos   и   ctg
sin [ 4 arccos ( - \frac{1}{2}) - 2 arcctg \frac{ \sqrt{3} }{3} ] = \\ sin [4* \frac{2 \pi }{3} - 2* \frac{ \pi }{3} ] = \\ sin[ \frac{8 \pi }{3} - \frac{2 \pi }{3} ] = sin(2 \pi ) = 0


6 sin^2x + 5cosx-7=0
Сначала использовать основное тригонометрическое тождество
6 sin^2x + 5cosx-7=0 \\ 6 sin^2x + 5cosx-6 - 1 =0 \\ 6 sin^2x + 5cosx-6( sin^{2}x + cos^{2}x) - 1 =0 \\ 6 sin^2x + 5cosx-6 sin^{2}x - 6cos^{2}x - 1 =0 \\ 5cosx - 6cos^{2}x - 1 =0
Это обыкновенное квадратное уравнение, в котором переменной является      cos x
- 6cos^{2}x +5cosx - 1 =0 \\ D = 25 - 4*(-6)*(-1) = 25 - 24 = 1 \\ cos x_{1} = \frac{-5-1}{-12} = \frac{1}{2} \\ cos x_{2} = \frac{-5+1}{-12} = \frac{1}{3} \\ x_{1} = \frac{+}{} \frac{ \pi }{3} + 2 \pi n \\ x_{2} = \frac{+}{} arccos \frac{1}{3} +2 \pi m,   n,m∈Z


2sin^2x + sinx cosx - 3 cos^2x=0
Проверить, что cos^{2} x не является корнем ( на ноль делить нельзя), а потом все уравнение почленно разделить на  cos^{2} x
cos^{2} x = 0
x = \frac{ \pi }{2} + \pi n \\ 2sin^2x + sinx cosx - 3 cos^2x=0 \\ 2sin^2 \frac{ \pi }{2} + sin \frac{ \pi }{2} cos \frac{ \pi }{2} - 3 cos^2 \frac{ \pi }{2}=0 \\ 1+0-0 \neq 0
Не корень, можно делить
2sin^2x + sinx cosx - 3 cos^2x=0 \\ \frac{2 sin^{2}x }{ cos^{2} x} + \frac{sinx cosx}{cos^{2} x} - \frac{3cos^{2} x}{cos^{2} x} =0 \\ 2 tg^{2}x +tgx-3 = 0
Обыкновенное квадратное уравнение с переменной   tg x
2 tg^{2}x +tgx-3 = 0 \\ D = 1 - 4*2*(-3) = 25 \\ tg x_{1} = \frac{-1-5}{4} = -\frac{3}{2} \\ tg x_{2} = \frac{-1+5}{4} = 1 \\ x_{1} =arctg( -\frac{3}{2} ) + \pi n \\ x_{2} =\frac{ \pi }{4} + \pi m
n,m ∈ Z
4,8(38 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ