М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
INNADANILOVA
INNADANILOVA
27.02.2023 19:09 •  Алгебра

Никак не могу решить. что не так? ​ ( смотри фото )

👇
Ответ:
Railyna
Railyna
27.02.2023

Объяснение:

Здесь разность квадратов, го неправильно написаны члены

(x+y+z)(x+y-z) = (a+b)(a-b)

a = x+y; b = z

4,6(82 оценок)
Ответ:
GoldenLynx1999
GoldenLynx1999
27.02.2023

Объяснение:       разность квадратов!

((х+у)+z)((x+y)-z)=(x+y)^2-z^2

4,7(18 оценок)
Открыть все ответы
Ответ:
slkncv
slkncv
27.02.2023

x²+9y⁴+1 ≥ -3xy²-x+3y²

x²+x+1 ≥ -3xy²+3y²-9y⁴

x²+x+1 ≥ -3y²(x-1+y²)

y²≥0 за будь-якого значення у

⇒ -3y²≤0

Знайдемо вершину параболи f(x)=x²+x+1

xo= -b/2a = -1/2= -0,5

f(xo)= 0,25-0,5+1=0,75

Вітки параболи напрямлені вгору, адже а>0, отже в такому випадку значення виразу x²+x+1 завжди додатнє (бо функція завжди додатня)

Тоді x²+x+1>0 за будь-якого значення х

 

1)Якщо у=0, x-будь-яке число, то -3y²=0 ⇒ -3y²(x-1+y²)=0

Як вказано раніше, x²+x+1>0

Будь-яке додатнє число більше нуля, отже й

x²+x+1 > -3y²(x-1+y²) ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

2) Якщо х=0, y≠0,

З іншого боку, нерівність можна перетворити на таку:

x²+x+3xy² ≥ 3y²-9y⁴-1

х(x+1+3y²) ≥ 3y²-9y⁴-1

Якщо один із множників--нуль, то і весь вираз дорівнює нулю:

Необхідно довести, що

3y²-9y⁴-1 ≤ 0

-(3y²)²+3y²-1 ≤ 0

y⁴≥0

Заміна: 3y²=n,  n>0

-n²+n-1≤ 0

f(n)= -n²+n-1

no= -1/-2 = 1/2= 0,5

f(no)= -0,25+0,5-1 = -0,75

Вітки параболи напрямлені вниз, бо а<0

Отже, -n²+n-1≤ 0  ⇒ 3y²-9y⁴-1≤0

х(x+1+3y²) ≥ 3y²-9y⁴-1    ⇒    x²+9y⁴+1 ≥ -3xy²-x+3y²

3) Якщо х>0, y≠0

x²+x+3xy² ≥ 3y²-9y⁴-1

x²≥0

Як зазначено раніше, 3y²-9y⁴-1<0

Відомо, що x²>0, 3y²>0

Оскільки х--додатнє число, то 3xy²>0

При додаванні додатніх чисел результат теж додатній: x²+x+3xy²>0

Додатнє число завжди більше за від'ємне, тож

x²+x+3xy² > 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

4) Якщо х<0, y≠0

x²+x+3xy² ≥ -9y⁴+3y²-1

Заміна: 3y²=n,  n>0

f(x)=x²+x(1+n)

b=1+n

коефіцієнт b не впливає на зміщення по ординаті, а коефіцієнта с в наданій квадратичній функції немає. Також вітки параболи напрямлені вгору, бо а>0.

Таким чином, x²+x(1+n)>0, а -n²+n-1<0, тому x²+x(1+n)>-n²+n-1<0   ⇒  x²+x+3xy² ≥ -9y⁴+3y²-1   ⇒  x²+9y⁴+1 ≥ -3xy²-x+3y²

Нерівність доведено

4,6(48 оценок)
Ответ:
andrei822
andrei822
27.02.2023
(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим  что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда  2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда  x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
4,4(25 оценок)
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ