М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lisa18811
Lisa18811
28.03.2023 16:24 •  Алгебра

Разложить на множители a(y-5)-b(y-5)

👇
Ответ:
varkraft
varkraft
28.03.2023
A(y-5)-b(y-5)=(у-5)(а-б)
4,5(96 оценок)
Ответ:
anastaseyaaaa
anastaseyaaaa
28.03.2023
a(y-5)-b(y-5)=(у-5)(а-б)
4,4(63 оценок)
Открыть все ответы
Ответ:
Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x)                                          на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее.  ПРАВИЛО нахождения минимума и максимума функции f(x)                                          на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x)                +                       –                        +
                 a x0x1 bf (x)                   /                       \                        /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0,           x min = x1.5. y max = y(x0),       y min = y(x1).
4,6(47 оценок)
Ответ:
baryshnikova20
baryshnikova20
28.03.2023

1)       64m^3 -1 = (4m)^3 - 1^3  =  (4m - 1)*(16m^2 + 4m + 1)

2)       (x-3)*(x^2 +3x +9) - x(x^2 -16) = 21

           x^3  -  3^3  -  x^3  +  16x^2  =  21

           16x^2   =  21  +  27

            16x^2  =  48

             x^2   =   3

              x_1    =   -V3,           x_2    =    V3

3)     (a+3)^3 - (a-1)^3 - 12a^3  =  a^3  +  3a^2*3  +  3a*9  +  27  -  a^3  + 3a^2 * 1  -  3a*1  +  1  -

               -12a^3  =  -12a^3  +  12a^2  + 24a  +  28  =  -4(a^3  -  3a^2  -  6a  -  7)

4)           (x+2)^3  -  x(3x+1)^2  +   (2x+1)(4x^2 -2x+1)   =  42

                x^3  +  3x^2 *2  +  3x*2^2  +  2^3  -  9x^3  -  6x^2  -  x  +  (2x)^3  +  1^3  -42  =  0

                11x  =  33

                  x   =  3

5)           (x^n  +  x^(n-1))^3  =  x^3n  +  3x^2n *x^(n-1)  +  3x^n *(x^(n-1))^2  +  (x^(n-1))^3  =

               =    x^3n  +  3x^(3n-1)  +  3x^(3n -2)  +  x^(3n-3)  =  x^3n(1  +  3x^(-1)  +  3x^(-2)  + x^(-3))

6)         (a-1)^3  +  3(a-1)^2  +  3(a-1)  +  1  +  a^3  =  a^3  -  3(a-1)^2  +  3(a-1)  -  1  +3(a-1)^2  +

             +3(a-1)  +  1+  a^3  =  2a^3  +  6(a-1)  +  1  =  2a^3  +  6a  -  5

4,6(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ