Из треугольника АВД получаем: угол В=90, угол АДВ = 40. Значит, угол А=90-40=50 градусов. И угол Д равен 50 градусов. Рассмотрим 2 прямоугольных треугольника АВД и ДСА. У них гипотенуза АД - общая и углы А=Д=50. А если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны! Ведь и вторые острые углы треугольников тоже равны. Сумма острых углов прямоугольного треугольника равна 90 градусов. Но если одни углы равны по 50, знасит другие острые углы треугольников равны по 40 градусов. Треугольник АВД равен треугольнику ДСА по гипотенузе и острому углу. Говорить прилежащему не недо, оба острых угла прилежат к гипотенузе. Удачи!
Чтобы определить координатные четверти, в которых находятся углы, нужно изобразить тригонометрический круг Угол 129° находится между углами 90° и 180° Значит, угол 129° находится во 2-ой четверти Аналогично с углом 235° Угол 235° находится в 3-й четверти, т.к. заключён между углами 180° и 270° Чтобы определить четверти отрицательных углов, идём в противоположном направлении от 0, т.е. по часовой стрелке, а не против Тогда угол -174° будет находиться между -90° и 180° Угол -174° находится в 3-й четверти Также угол -18° находится в 4-ой четверти Угол 900° на сумму углов 900°=360°+360°+180° Углы 360° уже не берём во внимание, угол 900° Угол 180° будет находиться во 2-ой четверти Значит, и угол 900° будет находиться в 3-й четверти