М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lizkelizaveta0
lizkelizaveta0
30.11.2021 22:46 •  Алгебра

Короче. как строить графики типа вроде такой, находим x нулевое и y нулевое и от него дальше идет f(x1) = f(x2) = y и так строить точки на графике? я просто примерно помню а с ним сделать ничего не могу : ( , !

👇
Ответ:
aaapruda
aaapruda
30.11.2021
1) Решить уравнение типа ax^2+bx+c=0 Корни будут являться точками пересечения с осью ОХ
2) Найти вершину Х₀=\frac{-b}{2a}    Y₀- подставляешь значение Х₀ вместо х в само уравнение. 
3) Определить направление ветвей если a -  отрицательное значение принимает - ветви вниз, если положительное - ветви наверх
4) Надо знать еще вот что - если дискриминант D >0, то график пересекает ось ОХ в двух точках, если D=0, то в 1 точке, D<0, то вообще не пересекает график ось ОХ
4,7(27 оценок)
Ответ:
никотян7
никотян7
30.11.2021
X0=-b/2a;
Y0=подставь Х0 в условие;(это вершина)
Дальше возьми 5 точек, так, чтобы вершина была в середине;Влево от нее уменьшаются, вправо увеличиваются( так легче считать)
Например вершина(-1;3),тогда точки
-3-2-1 0 1
Надеюсь, что пояснила!
4,4(81 оценок)
Открыть все ответы
Ответ:
hjhffff
hjhffff
30.11.2021
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\&#10;D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\&#10;D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\&#10;D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\&#10;x(x+1) \neq 0\\&#10;x_1 \neq 0\\\\&#10;x+1 \neq 0\\&#10;x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
Ответ:
desna80
desna80
30.11.2021
19 ч 20 мин = 19 1/3 ч
19 1/3 - 9 = 10 1/3 (ч) - время в пути.
10 1/3 ч = 31/3 ч
Пусть х км/ч - собственная скорость баржи,
тогда (х + 3) км/ч  скорость баржи по течению реки,
(х - 3) км/ч - скорость баржи против течения реки.

60 : (х + 3) + 60 : (х - 3) + 2 = 31/3
60 * 3 * (х - 3) + 60 * 3 * (х + 3) + 2 * 3 * (х + 3)(х - 3) = 31 * (х + 3)(х - 3)
180х - 540 + 180х + 540  + 6х² - 18х + 18х - 54 = 31х² - 93х + 93х - 279
360х + 6х² - 54 = 31х² - 279
31х² - 6х² - 360х - 279 + 54 = 0
25х² - 360х - 225 = 0        I  : 0
5х² - 72х - 45 = 0
D = - 72² - 4 * 5 * (- 45) = 5184 + 900 = 6084 = 78²

x_{1} =\frac{72+78}{2*5} =15 \\ \\ x_{2} = \frac{72-78}{2*5} =-0,6 \\ \\
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч.
15 - 3 = 12 (км/ч) - скорость баржи вверх по реке.
60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В.
9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В.
ответ: в пункт В баржа прибыла в 14 часов.
4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ