1) 7140=10 *714=2*5*(2*357)=2^2*5*3*119 2) 924=2^2*3*7*11 396=2^2*3^2*11 НОД(924,396)=2^2*3*11=132 НОК(924,396)=2^2*3^2*5*7*11=13860 3)8/21=0,38095238 4) x=0,(18) 100x=18,(18) 100x-x=99x=18,(18)-0,(18)=18 x=18/99 b) 0,00(4)=x 100x=0,(4)=y 10y=4,(4) 10y-y=9y=4,(4)-0,(4)=4 y=4/9 4/9=y=100x x=4/900 5) |4x+3|=-6x-7 ---> 4x+3=-6x-7 или 4x+3=6x+7 10x=-10 2x=4 x=-1 x=2 При проверке х=-1 не даёт верное равенство, остаётся только х=2 6) |x-3|>= |2x+3| x-3=0 , x=3 2x+3=0 , x=-1,5 - - - - - - + + + Знаки модулей (-1,5)(3) - - - + + + + + + В верхней строчке знаки (х-3), а в нижней - (2х+3) а) пусть х<-1,5 , тогда неравенство перепишется так: -(х-3)>=-(2x+3) -x+3+2x+3>=0 , x+6>=0 , x>=-6 Так как получили иксы >=-6, а мы находимся в интервале х<-1,5 , то -6<=x<-1,5 б) пусть -1,5<=x<3 , тогда -(x-3)>=2x+3 , -3x>=0 , x<=0 Окончательно имеем: -1,5<=x<=0 в) х>=3 , тогда х-3>=2х+3 , x<=-6 - нет решения, т.к. должны иметь х>=3. ответ: х Є [-6; -1,5) U[-1,5 ;0]= [-6;0]
Найдем значения Х, которые обнуляют подмодульные выражения: 4x-10=0; x=2,5 2x-14=0; x=7 Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая: 1)x<2,5 На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака: [-4x+10+2x-14]/ (x+3)(x-6) <=0 (-2x-4)/(x+3)(x-6) <=0 -2(x+2) / (x+3)(x-6) <=0 (x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7 Первый модуль раскроем без смены знака, а второй - со сменой знака: [4x-10+2x-14]/(x+3)(x-6) <=0 (6x-24)/(x+3)(x-6)<=0 6(x-4)/(x+3)(x-6)<=0 (x-4)/(x+3)(x-6)<=0
3х-13х=6-6
-10х=0
х=0
Подставим значение х в одно из уравнений( в первое):
0+3у=6
у=6:3
у=2
Проверка:
-13*0 -3*2=-6
-6=-6
ответ: 0;2