Ну вообще что синус что косинус это отношение катетов к гипотинузе в прямоугольном треугольнике . И ищут не косинус числа а косинус градусного угла , например 60 .Самое большая градусная мера угла котрую можно найти вроде 180 градусов.
Во-первых определимся с понятием : что такое область определения функции? Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют) Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д. а) у = √(х +3)(9 -х) У нас как раз квадратный корень. А это значит, что (х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей. х+3 = 0, ⇒ х = -3 9 -х = 0,⇒ х = 9 -∞ -3 9 +∞ - + + это знаки (х +3) + + - это знаки (9 -х) Это решение неравенства ответ: х∈ [ -3; 9] б) у = (5х³ -2х)/√(х² -11х +28) Рассуждаем аналогично. числитель существует ( можно посчитать значение) при любом "х" в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя) Значит, нам предстоит решить неравенство: х² - 11х +28 > 0 По т. Виета ищем корни х₁=4, х₂ = 7 ответ: х∈(-∞; 4)∪(7; +∞)
1 задание 2х+6-1+х=0 3х+5=0 3х=-5 х=-5/3 ответ:(-5/3;+ бесконечности) б) х^2-4х+3. можно решать через дискриминант, можно через теорему Виетта: х1+х2=4 х1*х2=3 тогда х1=3,х2=1 Чертим ось, и чертим закрашенные точки 1 и 3. тогда методом интервалов, положительные значения будут в (-бесконечности; 1] [3;+бесконечности) 2 задание. а) возведу в квардат х+х^2-2=0 по теореме виетта: х1+х2=-1 х1*х2=-2 тогда ответ х1=-2 х2=1 б) возведу снова в квадрат 2х+8-х^2=0 умножим на -1 и тогда х^2-2х-8=0 по теореме виетта; х1+х2=2 х1*х2=-8 тогда ответ х1=4 х2=-2 3 задание. т. к. условие корень, значит область опредения будет вычисляться так. 2-5х>=0 -5х=-2 х=0,4 чертим числовую прямую и ставим закрашенную точку 0,4. тогда методом интервалов ответ (-бесконечности; 0.4]