Вроде так ;)) Сначала выражаем х, потом его подставляем и решаем отдельно уравнение. А дальше просто находим у и подставляем его уже в выраженный х. И получаем, что у=-2, а х=5
Весь путь S время в пути пешехода (t), время в пути велосипедиста (t-2) путь до места встречи (S1), вторая часть пути (S2) S = S1 + S2 скорости велосипедиста и пешехода (vv) и (vp) S1 = vv * (4/3) S2 = vp * (4/3) S = (4/3) * (vv + vp) S = t * vp S = (t-2) * vv система (4/3) * (vv + vp) = t * vp t * vp = (t-2) * vv
4*vv = 3 * t * vp - 4*vp 4 * t * vp / (t-2) = (3*t - 4) * vp 4*t = (3*t - 4) * (t-2) 4*t = 3*t*t - 10*t + 8 3*t*t - 14*t + 8 = 0 D = 14*14 - 4*3*8 = 4*(49-24) = 10*10 t(1;2) = (14 +-10) / 6 = (7 +- 5) / 3 t = 4 t = 2/3 часа -- 40 минут - это меньше, чем 1 час 20 минут))) не является решением ответ: 4 часа шел пешеход, 2 часа ехал велосипедист.
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.