Во слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.
y = x² - 3x + 2
Если график пересекает ось абсцисс , то ордината точки пересечения равна нулю, то есть y = 0. Найдём абсциссу точки пересечения :
0 = x² - 3x + 2
x² - 3x + 2 = 0
(x - 2)(x - 1) = 0
или x - 2 = 0 и тогда x = 2
или x - 1 = 0 и тогда x = 1
Нашли две точки пересечения графика с осью OX, координаты которых :
(2 ; 0) , (1 ; 0)
Если график пересекает ось ординат , то абсцисса точки пересечения равна нулю, то есть x = 0. Найдём ординату точки пересечения :
y = 0² - 3 * 0 + 2 = 2
Координаты точки пересечения с осью OY : (0 ; 2)
cosx = cos2x,
cos2x - cosx = 0,
-2sin(3x/2)sin(x/2) = 0,
sin(3x/2) = 0 или sin(x/2) = 0
3x/2 = πn, n∈Ζ x/2 = πк, к∈Ζ
x = 2πn/3, n∈Ζ x = 2πk, k∈Ζ
При n=2, n=3, k=1 x=4π/3, x=2π, x=2π
ответ: 4π/3, 2π.