1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
Объяснение:
1) Общий член арифметической прогрессии an = a1 + d (n - 1).
a1 = - 14;
a2 = -11 = - 14 + d;
d = 3;
a23 = - 14 + 3 * 22 = 52.
Найдём сумму первых 23 членов этой арифметической прогрессии:
S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.
2) Найдём одиннадцатый член этой арифметической прогрессии:
a1 = 17,2;
a11 = 17,2 - 0,2 * 10 = 15,2;
Сумма одиннадцати членов равна:
S11 = 11 * (17,2 + 15,2)/2 = 178,2.
3) Найдём двадцать второй член этой арифметической прогрессии:
a1 = 6;
a10 = 12,3 = 6 +9 d;
d = 0,7;
a20 = 6 + 0,7 * 19 = 19,3.
Найдём сумму 22 членов этой арифметической прогрессии:
S22 = 22 * (6 + 19,3)/2 = 278,3.