Используем метод неопределённых коэффициентов.Предположим, что левая часть уравнения разлагается на множители второй степени с целыми коэффициентами. Обозначим один из них через , другой - через
.
Задача сводится к нахождению p, q, r, s. Тогда
Можно попробовать взять q=4, s=-2, тогда p=2, r=-2, а уравнение может быть представлено в виде:
не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*4=-12).
Сумма корней:
если взять q=-4, s=2, тогда p=-2, r=2, а уравнение может быть представлено в виде:
не имеет действительных корней, так как дискриминант меньше 0 (2^2-4*2=-4).
Сумма корней:
ответ: 2.
пустьвся работа равна 1, х часов работает один первый экскаватор, тогда второй работает один х-4 часов, производительность первого экскаватора 1/х, а производительность второго 1/(х-4), вместе они выполнят всю работу за 3 часа 45 минут или 15/4 часа. первый выполнит 15/4*(1/х)=15/(4*х) часть всей работы, а второй выполнит 15/4*(1/(х-4))=15/(4*х*(х-4)) часть работы, а вместе они выполнят всю работу, которая равна 1. получаем уравнение:
15/(4*х)+15/(4*х*(х-4))=1 после преобразований получим уравнение
15*(х-4)+15*х=4*х*(х-4)
15х-60+15х=4х²-16х
4х²-46х+60=0
2х²-23х+30=0
D=23²-4*2*30=529-240=289=17²
х₁=-((-23)+17)/(2*2)=6/4 - не удовлетворяет условию задачи
х₂=-(-23-17)/(2*2)=40/4=10
10ч - выполнит всю работу первый экскаватор,
10-4=6ч - выполнит всю работу второй экскаватор
ответ: 10ч и 6ч