М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LidaTetyorkina
LidaTetyorkina
23.10.2022 08:46 •  Алгебра

(x-6)(x+-4)(x+4)=3x+2 решить уравнение

👇
Ответ:
Danil111112
Danil111112
23.10.2022


(х-6)(х+2)-(х-4)(х+4)=3х+2

х²+2х-6х-12-(х²-16)=3х+2

х²-4х-12-х²+16=3х+2

-4х-3х=2+12-16

-7х=-2   /-7

х=2/7


4,8(62 оценок)
Ответ:
Nazar07072004
Nazar07072004
23.10.2022
(x - 6)(x + 2) - (x - 4)(x + 4) = 3x + 2
x² + 2x - 6x - 12 - x² + 16 - 3x - 2 = 0
 -7x + 2 = 0
-7x = -2
x = \frac{2}{7}
4,4(33 оценок)
Открыть все ответы
Ответ:
Dgj8
Dgj8
23.10.2022
Log₂(x²-7x+6)≥1+log₂7 log₂(x²-7x+6)≥log₂2+log₂7 log₂(x²-7x+6)≥log₂(2*7) log₂(x²-7x+6)≥log₂14 одз: x²-7x+6> 0 d=(-7)²-4*6=49-24=25 x=(7-5)/2=1    x=(7+5)/2=6               +                          -                        + x∈(-∞; 1)∪(6; +∞) x²-7x+6≥14 x²-7x+6-14≥0 x²-7x-8≥0 d=(-7)²-4*(-8)=49+32=81 x=(7-9)/2=-1    x=(7+9)/2=8             +                            -                          + x∈(-∞; -1]∪[8; +∞) найденные интервалы входят в область допустимых значений. ответ: x∈(-∞; -1]∪[8; +∞)
4,6(46 оценок)
Ответ:
14251714
14251714
23.10.2022

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ