Найдём точку пересечения графиков, решив систему: 2x - y = 1 x + y = 5 Сложим первое со вторым: 2x + x - y + y = 1 + 5 3x = 6 x = 2 y = 5 - x = 5 - 2 = 3 Значит, графики пересекаются в точке (2; 3).
2(x + y + 1) = 1 - 2(x - 2) 2x + 2y + 2 = 1 - 2x + 4 2y = 5 - 2x - 2x - 2 2y = 3 - 4x y = -2x + 1,5 Прямые, заданные уравнением y = kx + b тогда параллельны, когда их угловые коэффициенты равны. В данном случае k = -2. Подставляем в уравнение y = kx + b значения x, y и k. 3 = -2·2 + b -4 + b = 3 b = 7 Значит, искомая прямая задана уравнение y = -2x + 7. ответ: y = -2x + 7.
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.