Объяснение:
Функция задана формулой y = −4x + 1. Определите:
1) значение функции, если значение аргумента равно 10;
2) значение аргумента, при котором значение функции равно −7;
3) проходит ли график функции через точку В (9; -35).
1)y = −4x + 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
а)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=10
у= -4*10+1= -39 при х=10 у= -39
б)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -7
-7= -4х+1
4х=1+7
4х=8
х=2 у= -7 при х=2
в)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
В (9; -35)
y = −4x + 1
-35= -4*9+1
-35= -36+1
-35= -35, проходит.
43 (л) жидкости в первой ёмкости.
41 (л) жидкости во 2 ёмкости.
Объяснение:
В первой ёмкости на 2 л жидкости больше, чем во второй.
Если из первой ёмкости перелить во вторую 15 л жидкости, то во второй ёмкости станет в 2 раза больше, чем останется в первой.
Сколько литров жидкости в каждой ёмкости?
х - литров жидкости во 2 ёмкости.
х+2 - литров жидкости в первой ёмкости.
х+15 - литров жидкости стало бы после переливания во 2 ёмкости.
(х+2)-15 - литров жидкости стало бы после переливания в 1 ёмкости.
Согласно условию задачи, во второй ёмкости после переливания станет жидкости в 2 раза больше, уравнение:
2*[x+2)-15]=х+15
2(х-13)=х+15
2х-26=х+15
2х-х=15+26
х=41 (л) жидкости во 2 ёмкости.
41+2=43 (л) жидкости в первой ёмкости.
Проверка:
43-15=28 (л) стало бы жидкости в первой ёмкости после переливания.
41+15=56 (л) стало бы жидкости во второй ёмкости после переливания.
56 : 28 = 2 (раза), верно.