Число 10000 можно не учитывать, поэтому все числа там будут трёхзначные или четырёхзначные. С первыми всё сразу ясно: их с требуемым свойством ровно 9. Четырёхзначные числа, которые нас интересуют, имеют одну из четырёх форм: xxxa, xxax, xaxx, axxx, где x x не равно a a . Чисел вида xxxa имеется 92=81 9 2 = 81 по правилу произведения: цифру x выбираем любой, кроме нуля цифра a -- любая из десяти, кроме Легко видеть, что 81 получится и в остальных случаях по тому же принципу. Итого 9+4⋅81=333 9 + 4 ⋅ 81 = 333 .
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках. При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит,
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.
tg2α=2tgα/(1-tg²α)=2/3 : (1- 1/9)=2/3 : 8/9=3/4
tg3α=tg(2α+α)=(tg2α+tgα)/(1-tgα·tg2α)=(3/4+1/3): (1-1/3·3/4)=13/12 : (1- 1/4)=13/9