М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
89286666666
89286666666
02.08.2021 13:02 •  Алгебра

Выражение sin (π/2 + α) * cos (2π + α) + cos (3π/2 - α) * sin(α - 3π) - sin^2 α

👇
Ответ:
dan4ikchannel
dan4ikchannel
02.08.2021
sin( \frac{ \pi }{2} +a)*cos(2 \pi + \alpha )+cos( \frac{3 \pi }{2} - \alpha )*sin(a-3 \pi )-sin^{2} a= \\ =-cosa*cosa+sina*( \pi - \alpha )-sin^{2} a=-cos^{2} a-cosa-sin^{2} a= \\ =-(cos^{2} a+cosa+sin ^{2} a)=-1-cosa
4,4(58 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
02.08.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
алинка546
алинка546
02.08.2021
Квадратичную функцию схематично можно построить по схеме:
1) определяем направление ветвей параболы;
2) находим координаты вершины параболы;
3) находим точки пересечения функции с осью ОХ;
4) находим точку пересечения функции с осью OY;
5) находим точку, симметричную точке пересечения с осью OY;
6) соединяем полученные точки плавной линией.

y=1/2x²+2x+3;
1) ветви параболы направлены вверх, так как а=1/2>0;
2) x0=-b/(2a)=-2/1=-2;
y0=1/2*(-2)²+2*(-2)+3=1/2*4-4+3=2-4+3=1;
Вершина параболы (-2;1).
3) OX (y=0):
1/2x²+2x+3=0;
x²+4x+6=0;
D=16-24=-8<0
Точек пересечения с осью ОХ нет.
4) OY (x=0);
y=1/2*0²+2*0+3=3;
Точка пересечения с осью OY: (0;3).
5) 1/2x²+2x+3=3;
1/2x²+2x=0;
x²+4x=0;
x(x+4)=0;
x+4=0;
x=-4.
Точка, симметричная точке (0;3) - (-4;3).
6) см. на рисунке

y=-2x-4-1/3x²=-1/3x²-2x-4;
1) ветви параболы направлены вниз, так как а=-1/3<0;
2) x0=-b/(2a)=2/-2/3=-3;
y0=-1/3*(-3)²-2*(-3)-4=-1/3*9+6-4=-3+6-4=-1;
Вершина параболы (-3;-1).
3) OX (y=0):
-1/3x²-2x-4=0;
x²+6x+12=0;
D=36-48=-12<0;
Точек пересечения с осью ОХ нет.
4) OY (x=0);
y=-1/3*0²-2*0-4=-4;
Точка пересечения с осью OY: (0;-4).
5) -1/3x²-2x-4=-4;
-1/3x²-2x=0;
x²+6x=0;
x(x+6)=0;
x+6=0;
x=-6
Точка, симметричная точке (0;-4) - (-6;-4).
6) см. на рисунке

y=x²-14x+49;
1) ветви параболы направлены вверх, так как а=1>0;
2) x0=-b/(2a)=14/2=7;
y0=7²-14*7+49=0;
Вершина параболы (7;0).
3) OX (y=0):
x²-14x+49=0;
(x-7)²=0;
x=7
Точка пересечения с осью ОХ: (7;0).
4) OY (x=0);
y=0²-14*0+49=49;
Точка пересечения с осью OY: (0;49).
5) x²-14x+49=49;
x²-14x=0;
x(x-14)=0;
x-14=0;
x=14.
Точка, симметричная точке (0;49) - (14;49).
6) см. на рисунке

Изобразите схематично график функции: 1)y= 2)y= 3)y=
4,8(44 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ