М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Spasatel222
Spasatel222
07.08.2021 05:37 •  Алгебра

Разложить на множители. a^5+a+1 a^3-6a^2-a+30 a^2x(2(x-1)-b^3)+2(2+(b^3-2)x)-b^6 n(n^2-4(a+n)+x(a-(x-4)(x+4)

👇
Ответ:
AlexIQ161
AlexIQ161
07.08.2021
a^3-6a^2-a+30=a^3-3a^2-3a^2+9a-10a+30=\\
=\left(a^3-3a^2\right)-\left(3a^2-9a\right)-\left(10a-30\right)=\\
=a^2\left(a-3\right)-3a\left(a-3\right)-10\left(a-3\right)=\\
=\left(a-3\right)\left(a^2-3a-10\right)=\left(a-3\right)\left(a^2+2a-5a-10\right)=\\
=\left(a-3\right)\left(\left(a^2+2a\right)-\left(5a+10\right)\right)=\\
=\left(a-3\right)\left(a\left(a+2\right)-5\left(a+2\right)\right)=\\
=\left(a-3\right)\left(a+2\right)\left(a-5\right).
4,6(28 оценок)
Открыть все ответы
Ответ:
Vampir181
Vampir181
07.08.2021
Исследовать функцию: f(x)= \frac{x^2+1}{2x}
    • Область определения функции:
               x\ne 0\\ D(f)=(-\infty;0)\cup(0;+\infty)
• Точки пересечения с осью Ох и Оу:
     Точки пересечения с осью Ох: нет.
     Точки пересечения с осью Оу: Нет.
• Периодичность функции.
     Функция  не периодическая.
• Критические точки, возрастание и убывание функции:
    1. Производная функции:
f'(x)= \frac{(x^2+1)'\cdot 2x-(x^2+1)\cdot(2x)'}{(2x)^2} = \frac{x^2-1}{x^2}
    2. Производная равна 0.
f'(x)=0;\,\,x^2-1=0;\,\,\,\,\Rightarrow\,\,\,\,x=\pm1

___-__(-1)____+__(0)____-___(1)___+___

х=-1 - точка минимума
х=1 - точка минимума

f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум

Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).

• Точка перегиба:
  f''(x)= \frac{(x^2-1)'2x^2-(x^2-1)\cdot(2x^2)'}{(2x^2)^2} = \frac{1}{x^3}
Очевидно что точки перегиба нет, т.к. f''(x)\ne 0

• Вертикальные асимптоты: x=0.

• Горизонтальные асимптоты: \lim_{x\to \pm \infty} f(x)=\pm \infty

• Наклонные асимптоты: \lim_{x \to \infty} ( \frac{1}{2x} +0.5x)=0.5x

График приложен
Исследовать функцию и составить график (x^2+1)/2x расписать!
4,5(75 оценок)
Ответ:
666666ник
666666ник
07.08.2021

Сторона данного  треугольника а(3) равна Р:3=6√3:3=2√3 дм

Формула радиуса окружности, описанной около правильного треугольника:

R=a/√3 => 

R=2√3:√3=2 дм

   Формула стороны правильного многоугольника через радиус вписанной окружности:

а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,

Для правильного шестиугольника  tg(180°:n)=tg30°=1/√3

a₆=2•2•1/√3=4/√3

P=6•4/√3=8√3 дм

—————

 Как вариант:   Правильный шестиугольник состоит из 6 равных правильных треугольников. 

    На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника.  Задача решается с т.Пифагора. 


3. периметр правильного треугольника, вписанного в окружность, равен 6 корней из 3 дм. найдите перим
4,4(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ