1) 8 < 2x+y < 30
2) 6 < xy < 48
3) -3 < x-y < 6
Объяснение:
3 < x < 8
2 < y < 6
1) 2x+y
сначала вычислим минимальный предел:
2*3+2=8;
затем максимальный:
8*3+6=30.
Получится 8 < 2x+y < 30
2) xy
сначала вычислим минимальный предел:
3*2=6;
затем максимальный:
8*6=48.
Получится 6 < xy < 48
3) x-y
Так как здесь присутствует вычитание. Сначала из меньшего значения x вычитаем большее значение y, так мы получим минимальный предел выражения x-y. Потом из большего значения x вычитаем меньшее значение y, так мы получим максимальный предел значения x-y.
сначала вычислим минимальный предел:
3-6=-3;
затем максимальный:
8-2=6.
Получится -3 < x-y < 6
1) Установить соответствие:
Угол ABC опирается на дугу ADC
Угол DEF опирается на дугу DCF
Угол AGF опирается на дугу ACF
2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
D=b²-4ac=25+24=49
x₁=(-5+7)/2=1 х₂=(-5-7)/2=-6
х²+5х-6=(х+6)(х-1)
х²+х-2=0
D=b²-4ac=1-4(-2)=9
x₃=(-1-3)/2=-2 х₄=(-1+3)/2=1
х²+х-2=(х+2)(х-1)
Неравенство принимает вид:
(х+6)(х-1)(х+2)(х-1)≤0
или
(х+6)(х+2)(х-1)²≤0
отметим точки х=-6, х=-2, х=1 на числовой прямой и найдем знак функции
у=(х+6)(х+2)(х-1)² на каждом промежутке
+ - + +
III
-6 -2 1
Решением неравенства являются х∈[-6;-2]υ{1}
Целые решения -6; -5; -4; -3; -2; 1
Всего 6 целых решений.