конечно, решается...
это биквадратное уравнение ("дважды" квадратное...)
вводим замену (новую переменную) а = с^2
и получаем квадратное уравнение относительно переменной а
a^2 - 26a - 160 = 0
D = 26*26 + 4*160 = 4*(169+160) = 4*329
а1 = (26 - 2V329)/2 = 13 - V329
а2 = (26 + 2V329)/2 = 13 + V329
возвращаемся к замене...
с^2 = 13 - V329 ---не имеет смысла (квадрат числа не может быть отрицательным числом...)
с^2 = 13 + V329
c1 = V(13 + V329)
c2 = -V(13 + V329)
это решение (хоть и числа "некрасивые" ---если нет ошибки в условии...)
arcctg 2/3=β, тогда ctg β= 2/3, 0 < β < π
Найдем
α+β=arcctg(-1)=3π/4
ответ.arcctg 1/5+ arcctg 2/3= 3π/4
2) аналогично.
arc tg 3/5 = α, tg α = 3/5, -π/2 < α <π/2
arccos 4/√17=β, сos β=4√17, 0 ≤ β ≤π
Угол β в первой или второй четверти, синус в певрой или второй четверти положительный. sinβ=√1-cos²β=√1-(16/17)=1/√17
tgβ=sinβ/cosβ=1/4
Найдем
α+β=arctg1=π/4
ответ. arc tg 3/5+arccos 4/√17=π/4