М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alinarostova66
alinarostova66
24.06.2021 13:28 •  Алгебра

Решите уравнение х в четвёртой степени - 5х в квадрате +4=0

👇
Ответ:
rudembatalov
rudembatalov
24.06.2021
X^4 - 5X^2 + 4 = 0
X^2 = A ; A > 0 
A^2 - 5A + 4 = 0
D = 25 - 16 = 9 ; √ D = 3 
A1 = ( 5 + 3 ) : 2 = 4 
A2 = ( 5 - 3 ) : 2 = 1 
X1 = + 2 
X2 = - 2 
X3 = + 1 
X4 = - 1 
4,8(40 оценок)
Ответ:
x^{4} -5 x^{2} +4=0 \\ x^{2} =t \\ t^{2} -5t+4=0 \\ D=(-5)^{2} -4*4=25-16=9 \\ \sqrt{D} =3 \\ t _{1} = \frac{5+3}{2} = \frac{8}{2}=4 \\ t_{2} = \frac{5-3}{2} = \frac{2}{2} =1 \\ \\

x^{2} =4 \\ x_{1} =2 \\ x_{2} =-2 \\ \\ x^{2} =1 \\ x_{1} =1 \\ x_{2} =-1
4,4(49 оценок)
Открыть все ответы
Ответ:

Вот если с много членом я разобрался ну типа много членов, то дву член в кубе это я не знаю. Я конешно играл в минесрафт и строил там квадратные члены но не двучлены так что я не знаю как можно построить квадратный дву член . Попробуй у мамы с она всегда знаеть! Я вот недавно с как умножить 8 x 6 так она как профессор за секунду сказала что будет 22. Ну я щяс в 12 класе типа хз как умножать и ваще у меня 2 по алгебрам и геометриям и математикам. А за 2 мама больно ремнём даёт попу щиплет ай ай

Объяснение:

4,7(53 оценок)
Ответ:
AripovZ
AripovZ
24.06.2021

\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Объяснение:

Рассмотрим сначала первое неравенство системы.

Начнем с ОДЗ:

log_3^2x+10,\;=\;x0\\log_3x+30,\;x\dfrac{1}{27}\\x0\\x+5\ne0,\;=\;x\ne-5\\=x\in\left(\dfrac{1}{27};+\infty\right)

Продолжим решение:

\dfrac{lg(log_3^2x+1)-lg(log_3x+3)}{x+5}\ge0\\\dfrac{lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)}{x+5}\ge0

1)

lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)=0,\;=\;\dfrac{log_3^2x+1}{log_3x+3}=1\\\\=log_3^2x+1=log_3x+3,\;=\;log_3^2x-log_3x-2=0

Замена: t=log_3x.

t^2-t-2=0\\t^2+t-2t-2=0\\t(t+1)-2(t+1)=0\\(t+1)(t-2)=0\\t=-1\\t=2

Обратная замена:

log_3x=-1\\x=\dfrac{1}{3}\\\\log_3x=2\\x=9

С учетом ОДЗ оба корня подходят.

2)

x+5\ne0\\x\ne-5

С учетом ОДЗ получим, что решение неравенства:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)

Теперь перейдем ко второму неравенству системы:

Понятно, что сначала нужно написать ОДЗ.

0.5x0,\;=\;x0\\(0.5x)^{6^x}0,\;=\;x0\\=x0

Продолжим решение:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Заметим, что данное неравенство хорошо раскладывается на множители:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Решим неравенство по методу интервалов.

1)

\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}

2)

36-6^x-log_60.5x=0\\log_60.5x=-6^x+36

Введем функции f(x)=log_60.5x и g(x)=-6^x+36. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, log_61=-36+36,\;=\;0=0, верно. Так, мы решили это уравнение, получив, что его корень x=2.

Тогда решение неравенства с учетом ОДЗ:

x\in\left(\dfrac{1}{4};\;2\right)

Итого имеем:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)

Найдем пересечение:

x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Задание выполнено!

4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ