М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
emesiemesi95
emesiemesi95
28.06.2020 01:34 •  Алгебра

Решить заранее ) a/a^2-1 + a^2+a+1/a^3-a^2+a-1 + a^2-a-1/a^3+a^2+a+1 - 2a^3/a^4-1

👇
Ответ:
gonigh
gonigh
28.06.2020
\frac{a}{a^2-1}+ \frac{a^2+a+1}{a^3-a^2+a-1}+ \frac{a^2-a-1}{a^3+a^2+a+1}- \frac{2a^3}{a^4-1}= \\ = \frac{a}{a^2-1}+ \frac{a^2+a+1}{a^2(a-1)+1(a-1)}+ \frac{a^2-a-1}{a^2(a+1)+1(a+1)}- \frac{2a^3}{(a^2-1)(a^2+1)}= \\ =\frac{a}{(a-1)(a+1)}+ \frac{a^2+a+1}{(a^2+1)(a-1)}+ \frac{a^2-a-1}{(a^2+1)(a+1)}- \frac{2a^3}{(a-1)(a+1)(a^2+1)}= \\ = \frac{a^3+a+(a^2+a+1)(a+1)+(a^2-a-1)(a-1)-2a^3}{(a-1)(a+1)(a^2+1)}=\\=\frac{a^3+a+a^3+2a^2+2a+1+a^3-2a^2+1-2a^3}{(a-1)(a+1)(a^2+1)}= \\= \frac{a^3+3a+2}{(a-1)(a+1)(a^2+1)}
4,4(63 оценок)
Открыть все ответы
Ответ:
samat314
samat314
28.06.2020
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410
  25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410
 169х²+90х+34≤ 203х²-165х+459
 169х²-203х²+90х+165х+34-459 ≤ 0
   -34х²+255х-425≤0  ( : -17)
    2х²-15х+25≥0
     D=225-200=25=(5)²
    x1=(15+5)/4=5
    х2=5/2=2,5
2(х-5)(х-2,5)≥0   (:2)
   (х-5)(х-2,5)≥0
                                     2,55 х
                                               +                    -               +
   нас интересуют только те точки ,где функция принимает положительное значение  - это промежутки от -∞ до 2,5   и  от  5 до +∞
точки 2,5 и 5 тоже входят , так как неравенство не строгое
   тогда запишем : х∈(-∞;2,5]U[5;+∞)
   
4,7(34 оценок)
Ответ:
mivaniuk
mivaniuk
28.06.2020
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ