Боковые стороны по определению равны (т.к. они равнобедренные) 1. Нужно опустить перпендикуляр к большему основанию (от любого конца меньшего основания (концов всего 2 )) 2. Из за опущенного перпендикуляра образуется прямоугольный треугольник, гепотенуза которого равна 5 корней из 2 и углом 45 градусов. Из этого треугольника мы можем высчитать как высоту трапеции, так и отрезок большего основания. И т.к. у нас образовался прямоугольный треугольник, то 2 катета будут равными ( 2 угла по 45 градусов, один 90). Если посчитать, то действия будут примерно такими: Возьмём за х одну из 2ух равных сторон ( какую бы мы не взяли, разницы нету, они равные), и получаем пропорцию (и ещё, sin45=cos45=корень из 2 делённый на 2) √(2)/2=x/5√2 => x=5 (синус - противолежащий катет на гипотенузу, косинус - прилежащий катет на гипотенузу) 3. Мы нашли высоту и часть большего основания, далее мы найдём всё большее основания. Так как трапеция равнобедренная, то отрезки будут с разных концов равными друг для друга => Большее основание= 10+5*2=20 4. Ну а теперь находим площадь. Площадь трапеции расчитывается по формуле: S=Средняя линия трапеции*H. Средняя линия трапеции расчитывается по формуле Ac=(большее основание + меньшее основание)/2. S=(20+10)2*5=> S=75 Надеюсь я сумел вам
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
x^2 - x - 2 = 0
Решим через дискриминант:
D = 1 + 4*2 = 1 + 8 = 9 = 3^2
Дискриминант больше нуля, значит 2 корня
x1 = ( 1 + 3)/2 = 4/2 = 2,
x2 = ( 1 - 3)/2 = - 2/2 = - 1
ответ: - 1, 2
№ 2
3x^2 + 24x - 7 + 7 = 0
3x^2 + 24x = 0
Решим неполное квадратное уравнение
Разделим на 3
x^2 + 8x = 0
Выносим за скобки общий множитель
x ( x + 8) = 0
x = 0
x = - 8
ответ:
- 8; 0