При любом x<0 верно x^16+x^8>x^12 (т.к. все слагаемые положительны из-за чётной степени), а значит, x^16-x^12+x^8>0. Осталось доказать, что -x+1>0. Перенесем -x в правую часть и получим x<1, что удовлетворяет нашему условию x<0, а значит, -x+1>0.
Т.к. x^16-x^12+x^8>0 и -x+1>0, всё выражение больше 0.
2) x=0
Подставим x=0 в x^16-x^12+x^8-x+1>0 и получим верное неравенство 1>0, т.е. и в этом случае всё выражение больше 0.
3) x>0
При любом x>0 верно x^16>x^12, а значит x^16-x^12>0. Осталось доказать, что x^8-x+1>0. При любом x>0 x^8>x, а значит, x^8-x>0. 1>0.
Т.к. x^16-x^12>0 и x^8-x>0 и 1>0, всё выражение больше 0.
1. а) 0,255=255/1000=17*3*5/(5^3*2^3=(17*3/2)/(5^2*2^2). Значит √0,255=(√(51/2))/10. Т.к. 51/2 несократимая дробь и числитель и знаменатель не являются полными квадратами, то число иррационально б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
1) ( а + 3 ) кг меди стало после добавления , всего сплава стало ( а + 3 ) кг , Процентное содержание меди равно ( а + 3 )/ 33 х 100 % 2) _а__ а + 3 Выражение имеет смысл при всех значениях а , кроме а=-3. 6 ) 2/ 9 + 5/18 =4/ 18 + 5/18 = 9 / 18 = 1\2 3,5 - 6 = - 2,5 1/ 2 : ( - 2 ,5 ) = - 1 /2 х 2/5 =1 /5 = 0,2
Если
Отсюда
Если
Если
Если
Отсюда, во всех возможных , левая часть уравнение принимает только положиьельные значения, отсюда х - любое число
Что и требовалось доказать