Основные формулы для решения задачи: V по теч. = Vc + V теч. - скорость по течению реки V против теч. = Vc - V теч. - скорость против течения t по теч.= S/V по теч. - время на путь по течению реки t против теч. = S/V против теч. - время на путь против течения реки По условию: Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) . Путь в одну сторону S = 285 км Время на путь туда-обратно t = 36 - 19 = 17 часов. Пусть скорость течения Vc = х км/ч Путь по течению: Скорость Vпо теч. = (34 + х ) км/ч Время в пути t₁= 285/(34+x) ч. Путь против течения: Скорость V против теч. = (34 - х) км/ч Время в пути t₂ = 285/(34-x) ч. Время на путь туда-обратно : t₁ +t₂ = 17 ч. Уравнение. 285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x) знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34 285(34-x) + 285(34+x) = 17(34+x)(34-x) 9690 - 285x + 9690 + 285x= 17(34² - x² ) 19380 = 17(1156 -x²) |÷17 1140= 1156 - x² x²= 1156-1140 x² = 16 x₁ = - 4 не удовлетворяет условию задачи х₂ = 4 (км/ч) Vтеч. ответ: 4 км/ч скорость течения реки.
sin< 750=sin(2*360+30)=sin(4пи+30)=sin30=1/2
cos<750=cos(4пи+30)=cos30=корень из 3 деленная на 2
tg750=1/корень из 3
ctg750=корень из 3
sin< 810=sin(2*360+90)=sin(4пи+90)=sin90=1
cos<810=cos(4пи+90)=cos90=0
tg810=не существует
ctg810=0
sin< 1260=sin(3*360+180)=sin(6пи+180)=sin180=0
cos<1260=cos(6пи+180)=cos180=-1
tg1260=0
ctg1260=не существует
В последнем и предпоследнем не уверена.