1) 8х + 1,3 = 34,9 - 8х 2) -4 = -2/8х
8х + 8х = 34,9 - 1,3 х = -4 : (-2/8)
16х = 33,6 х = 4 · 8/2
х = 33,6 : 16 х = 2 · 8
х = 2,1 х = 16
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 9х = 108 4) 6х - 8 = 6,4
х = 108 : 9 6х = 6,4 + 8
х = 12 6х = 14,4
х = 2,4
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5) 4(х - 2) = -1 6) 40х = -32
4х - 8 = -1 х = -32 : 40
4х = 8 - 1 х = -0,8
4х = 7
х = 7/4
х = 1 целая 3/4 = 1,75 (в десятичных дробях)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7) 4х - 2 = 22 8) 5х - 13 + 2(3 - х) = -х + 16
4х = 22 + 2 5х - 13 + 6 - 2х = -х + 16
4х = 24 5х - 2х + х = 16 - 6 + 13
х = 24 : 4 4х = 23
х = 6 х = 23/4 = 5 целых 3/4 = 5,75
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9) 4(3х + 5) - 3(4х - 1) = 22х + 12
12х + 20 - 12х + 3 = 22х + 12
12х - 12х - 22х = 12 - 3 - 20
-22х = -11
х = -11 : (-22)
х = 1/2 = 0,5 (в десятичных дробях)
Объяснение:
Во-первых, область определения
-x^2 - 8x - 7 >= 0
x^2 + 8x + 7 <= 0
(x + 1)(x + 7) <= 0
x = [-7; -1]
Во-вторых, выделяем корень
√(-x^2 - 8x - 7) = -ax + 2a + 3
Возводим в квадрат
-x^2-8x-7 = (-ax+2a+3)^2 = a^2*x^2-4a^2*x+4a^2-6ax+12a+9
x^2*(a^2 + 1) + x*(8 - 4a^2 - 6a) + (7 + 4a^2 + 12a + 9) = 0
x^2*(a^2 + 1) + 2x*(-2a^2 - 3a + 4) + (4a^2 + 12a + 16) = 0
Получили квадратное уравнение.
Если оно имеет только 1 корень, то D = 0
D/4 = (-2a^2 - 3a + 4)^2 - (a^2 + 1)(4a^2 + 12a + 16) =
= (4a^4 + 12a^3 + 9a^2 - 16a^2 - 24a + 16) -
- (4a^4 + 4a^2 + 12a^3 + 12a + 16a^2 + 16) =
= 9a^2 - 16a^2 - 24a - 4a^2 - 12a - 16a^2 = -27a^2 - 36a = -9a(3a + 4) = 0
a1 = 0; a2 = -4/3
Подставляем эти а и проверяем х.
1) a = 0
0 + √(-x^2 - 8x - 7) = 3
-x^2 - 8x - 7 = 9
-x^2 - 8x - 16 = -(x + 4)^2 = 0
x1 = x2 = -4
2) a = -4/3
-4x/3 + √(-x^2 - 8x - 7) = -8/3 + 3 = 1/3
√(-x^2 - 8x - 7) = 4x/3 + 1/3 = (4x + 1)/3
9(-x^2 - 8x - 7) = (4x + 1)^2
-9x^2 - 72x - 63 = 16x^2 + 8x + 1
25x^2 + 80x + 64 = (5x + 8)^2 = 0
x1 = x2 = -8/5
при приписывании справа того же числа получим шестизначное число abcabc (т.е. число 100000a+10 000b+ 1 000c+100a+10b+c=100100a+10010b+1001c=1001*(100a+10b+c)
а так 1001=7*11*13, то получаемое число кратно числам 7, 11, и 13 так как один из множителей в разложении (а именно 1001) делится нацело на єти числа.
Доказано