Пусть 1 кг арбуза стоит х грн, а 1 кг дыни у грн, тогда за 7 кг арбуза заплатили 7х грн, а за 3 кг дыни - 3у грн, а вместе 7х + 3у, что равно 5,90 грн. За 8 кг арбуза заплатили 8х грн, а за 6 кг дыни – 6у, по условию имеем 6у – 8х = 0,8.
Имеем систему уравнений
7х +3у = 5,9
6у – 8х =0,8
Умножим первое уравнение на 2: 14х + 6у = 11,8. Отнимем от первого уравнения второе: 14х + 6у - 6у +8х = 11,8 – 0,8; 22х = 11, х= 0,5; 7·0,5 + 3у =5,9; у = (5,9 – 3,5):3 =0,8
ответ: 1кг арбуза 0,5 грн = 50 коп.; 1 кг дыни 0,8 грн = 80 коп.
докажем утверждение от противного.
можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.
переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.
или, иначе говоря, i′ пересекает i.
возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.
все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит
следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.
но из условия следует конечность их числа в любом квадрате.