Удобно записать в виде таблицы всевозможные простые числа, отметив при этом участвующие в их записи цифр (картинка). Видно, что цифры 2, 4 и 5 могут участвовать всего в двух числах, причем во всех случаях одно из чисел - вариант ответа. Предположим, что числа 2 нет в расстановке. Тогда, цифра 2 записывается в составе числа 23. Оставшиеся числа 41 и 5 отлично удовлетворяют условию. Вывод: число 2 может отсутствовать Предположим, что числа 41 нет в расстановке.Тогда, цифра 4 записывается в составе числа 43. Остались числа 2 и 5. Но цифра 1 осталась незадействованной. Значит, без участия числа 41 такая расстановка невозможна. ответ: 41
Задачу можно решать несколькими Проще с арифметической прогрессии.Первый(а₁=1)играет с остальными (n-1) партий,например,если участников 5,то первый играет с другими 4 партии.Если исходить из прогрессии,то каждый последующий,учитывая уже сыгранные партии,будет играть на одну партию меньше(d=1).Например,5 участников,первый играет 4 партии,второй,учитывая,что сыграл с первым,сыграет 3 партии.Третий,учитывая,что сыграл с двумя первыми,сыграет 2 партии и т.д. Sn=(2a₁+d(n-1))/2 · n; 45=(2·1+1·(n-1))/2 · n; 90=(2+n-1)·n; n²+n-90=0; D=361; n₁=-10-не соответствует,кол-во участников не может быть отрицательным; n₂=9.ответ: 9
9x⁴-6x³+3x² 3x²+2x-2
6x³-10x²+6x
6x³-4x²+2x
-6x²+4x-2
-6x²+4x-2
0