Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
2-х>3, 2-(-2)>3, 6>3 - верное неравенство, значит х=-2 явл. решением данного неравенства.
б) x²+2,3<0 ; (-2)²+2,3<0 ; 6,3<0 - неверное неравенство , значит х=-2 не является решением заданного неравенства.
в) 5t<-t² ; 5(-2)<-(-2)² ; -10<-4 - верное неравенство, значит х=-2 явл. решением заданного неравенства
г) |y|<1 ; |-2|<1 ; |-2|=2 --> 2<1 - неверное неравенство,значит х=-2 не является решением заданного неравенства.